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This study compared the thinking of five high performing and five low performing primary 

students on a set of graphically-oriented numeracy items. Generally, their thinking differed 

in four ways. First, high performers drew on existing knowledge and skills, which low 

performers appeared to lack. Second, high performers used multiple cues to complete tasks, 

whereas low performers worked from a single cue or overlooked cues. Third, high 

performers used simple solution procedures correctly; in contrast, low performers used 

more mentally demanding procedures with limited success. Finally, high performers were 

more knowledgeable about everyday graphics than low performers.  

Introduction 

Worldwide there has been a strong and ongoing emphasis on the development of a 

numerate populace who can use mathematics effectively in everyday life at home, at work 

and in the community. Traditionally, numeracy has been characterised by arithmetical 

competence. However, in the digital age, numeracy also involves proficiency with the 

various graphics that are commonly used in mathematics (Department for Education and 

Employment, 1998): “numeracy also demands practical understandings of the ways in 

which information is gathered by counting and measuring, and is presented in graphs, 

diagrams, charts and tables (emphasis added)” (p. 110). Thus, the achievement of a 

numerate populace requires that all citizens use graphics effectively in mathematical 

situations. The students who are most at risk of being innumerate are those who struggle 

with mathematics. Hence, the achievement of the numeracy goal depends on our ability to 

educate those students who have difficulty with essential mathematics. These students are 

of two types. First, there are those students who have special needs due to a problem that 

impacts on their ability to think or to learn. These difficulties include memory problems, 

processing or perceptual deficits (Diezmann, Thornton, & Watters, 2003). Second, there 

are those students who do not have specific learning problems but nevertheless are low 

performers. Notwithstanding the importance of understanding how to educate students with 

special needs, this paper focuses on ways to support students who are low performers on 

numeracy items that incorporate graphics. This support will be informed by the 

performance of students who consistently demonstrate proficiency with these items 

because such students can provide an insight into the knowledge and skills that are required 

to be successful. Thus, this study will contribute towards addressing the paucity of 

literature on high and low performing Australasian students (Diezmann, Lowrie, Bicknell, 

Farragher, & Putt, 2004). 
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Background  

To provide a background to the thinking and solution strategies of high and low 

performers on numeracy tasks, we first provide an overview on graphics in mathematics 

and high and low performers’ use of representations in mathematics.  

Graphics in Mathematics  

In recent decades, there has been enormous growth in the field of information graphics 

for the management, communication, and analysis of information (Harris, 1996). Although 

there are many thousands of graphics in use, they can be categorized into six broad 

categories that Mackinlay (1999) refers to as “graphical languages” (Table 1). These 

languages are distinguished by the information that is encoded in the graphic and the 

relationships among the graphical elements. Knowledge of graphics is fundamental to 

success on many numeracy items. However, although graphics are visual-spatial rather than 

linguistic or symbolic representations, many primary students have difficulty interpreting 

graphics, such as number lines (Diezmann & Lowrie, 2006).  

Table 1 

An Overview of the Six Graphical Languages (adapted from Mackinlay, 1999)  

Graphical Languages Encoding Technique 

Axis Languages (e.g., number line) A single-position encodes information by the 

placement of a mark on an axis.   

Opposed Position Languages (e.g., 

bar chart) 

Information is encoded by a marked set that is 

positioned between two axes. 

Retinal List Languages (e.g., 

saturation on population graphs) 

Retinal properties are used to encode information. 

These marks are not dependent on position. 

Map Languages (e.g., road map) Information is encoded through the spatial location 

of the marks.  

Connection Languages (e.g., 

network) 

Information is encoded by a set of node objects with 

a set of link objects. 

Miscellaneous Languages (e.g., pie 

chart) 

Information is encoded with a variety of additional 

graphical techniques (e.g., angle, containment).  

High and Low Performers’ Use of Representations in Mathematics 

Mathematical proficiency is influenced by students’ understanding of a variety of 

representations including graphics. According to von Glasersfeld (1987), the individual 

plays an important role as the interpreter or decoder of a representation: “A representation 

does not represent by itself – it needs interpreting and, to be interpreted, it needs an 

interpreter” (p. 216). Students’ proficiency with representations impacts on whether they 

will be high or low performers. For example, students who are successful on number line 

items recognise that it is a measurement model and explain their solutions with reference to 

distance, proximity, or reference points (Diezmann & Lowrie, 2006). In contrast, some 

students who are unsuccessful on number line items interpret the number line as a counting 

model and overlook the proportional distances between marks on the line. Students’ 

capability with linguistic representation also distinguishes high performers from low 

performers. For example, whereas novices (typically low performers) interpret keywords 

Mathematics: Essential Research, Essential Practice — Volume 1

227



  

literally and make links to a limited knowledge base, experts (typically high performers) 

use keywords as cues to an appropriate knowledge schema (Chi, Feltovich, & Glaser, 

1981): “Experts perceive more in a problem statement than novices do. They have a great 

deal of tacit knowledge that can be used to make inferences and derivations from the 

situation to the problem statement” (p. 149). The differences between high and low 

performers in their interpretations of various representations extend to reasoning from the 

representations. An individual’s reasoning must take into account the mathematical 

conventions that are associated with particular representations. Hence, representations are 

systems of organised data with inbuilt sets of rules of use. For example, reasoning about 

distance on a map requires attention to the scale of the map. Galotti (1989) proposes that 

knowledge includes an appreciation of the various rule-based systems in use in 

mathematics:  “Experts, by virtue of their richer knowledge base and extensive experience 

with problems within a given domain, have a larger and more differentiated set of rules 

with which to reason” (p. 347). Thus, being mathematically proficient requires an extensive 

knowledge of various representations including graphics and the associated reasoning that 

is used with different types of representations. 

Research Design and Methods 

This study had two purposes. The educational purpose was to gain insights into the 

differences between high and low performers with a view to identifying specific ways to 

support the thinking of low performers. The methodological purpose was to establish 

whether a comparison between high and low performers was a fruitful avenue for gaining 

insights into students’ thinking about graphically-oriented numeracy items, and hence, 

would be worthwhile implementing with a more extensive data set. 

The Participants 

Ten participants were identified for this study from 67 Queensland students who 

participated in a series of annual interviews about graphically-oriented numeracy items. 

These participants comprised five of the most high performing students (one boy, four 

girls) over two annual interviews and five of the most low performing students (two boys, 

three girls) for the same period. These two groups of students are henceforth referred to as 

“high performers” and “low performers”. The students were aged between 10 and 11 years 

when they commenced in the study. All students attended one of two similar schools in a 

moderate socio-economic area of a capital city. 

The Interviews 

The participants were interviewed on a set of 12 items in each of two annual 

interviews. These tasks were drawn from the 36-item Graphical Languages in Mathematics 

[GLIM] test which comprises six sets of numeracy items for each of the six graphical 

languages (see Lowrie and Diezmann, 2005 for a discussion of the test). Examples from 

this test are presented in the Appendix. The two easiest items from each of the six language 

groups were presented to the students in the first annual interview and six pairs of items of 

moderate difficulty were presented in the second annual interview. (The six pairs of the 

most difficult items will be presented to students in a third annual interview, which has yet 

to be conducted.)  
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Data Collection and Analysis  

Interview data comprised students’ selections on a multiple choice task and the reasons 

they gave for their responses. The students attempted each pair of tasks independently, and 

were then asked to explain their solutions. They were probed about any difficulties that 

they experienced but no scaffolding was provided to avoid the possibility that support on 

one item might influence understanding on another item. The interviews were video-taped 

to facilitate analysis. These data were analysed within an inductive theory-building 

framework with a focus on description and explanation (Krathwohl, 1993). The tactics for 

generating meaning were noting patterns and themes, imputing plausibility, and building a 

logical chain of evidence (Miles & Huberman, 1994).  

Results and Discussion  

Four themes emerged from a comparison of high and low performers’ responses to the 

24 GLIM items.  

Theme 1: The Use of Mathematical Knowledge and Skills 

In interpreting items, high performers were more likely to bring existing mathematical 

knowledge and skills to bear on the task. Low performers were less mathematically 

proficient, and worked out their solutions in a more laborious fashion that typically 

involved counting. Though the strategies low performers selected were appropriate, their 

strategies were more prone to error. Differences in the use of existing knowledge and skills 

by high and low performers are illustrated by the following example.  

On The Pie Chart item, students were asked to determine how many hours were spent 

on homework based on the information presented (see Appendix). The high performers and 

low performers used different strategies. The five high performers used a fractional 

strategy successfully. In contrast, four low performers used an estimate and add strategy 

with mixed success and the final low performer misunderstood the question.  

The fractional strategy required an understanding of quarters as shown in Chloe’s (a 

high performer) response. 

Chloe: About a quarter of it (the time) was Mathematics and that was two hours so there was four 

quarters … two times four is eight.  

By identifying the Mathematics portion of the pie chart as a quarter, Chloe reduced the 

question to a simple multiplication calculation, which she easily accomplished mentally. 

That is, two hours of Mathematics multiplied by four (for a quarter of the pie chart) is eight 

hours of homework in total. Thus, as typical of the other high performers, Chloe’s success 

was due to her ability to use existing knowledge and skills to achieve the correct answer. 

None of the low performers recognised the opportunity to use a simple fractional strategy 

or mentioned that Mathematics was a represented by a quarter of the pie chart. 

The estimate and add strategy was used by four of the five low performers. Two were 

successful and two were unsuccessful. Although this strategy had the potential to be 

successful, it required students to estimate the number of hours in each segment of the pie 

chart accurately and to sum these values to determine the total hours shown on the chart.  

An inherent pitfall in applying this strategy was to accurately estimate the value of each 

portion of the chart, as shown in Bree’s (a low performer) explanation. 
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Bree: Whenever I count, I get to nine … Mathematics is two hours ... each half of Science (is) two, 

Reading and History … an hour each, and I counted that (Art) as an hour. That’s why I (got 

nine). 

Bree used only whole number values when estimating sections of the pie chart. She 

incorrectly identified Science as 4 hours (actually 3½ hours) and Art as 1 hour (actually ½ 

an hour). Bree added these incorrect estimates for Science and Art to her correct estimates 

of two hours for Mathematics and one hour each for Reading and History to reach a total of 

nine hours instead of eight hours. Similarly, Mike (a low performer) also overestimated the 

value of some sections of the pie chart. However, two other low performers, Nellie and 

Helen, correctly estimated values and were successful in their use of the estimate and 

counting strategy.  

Thus, a key difference between these high performers and low performers on The Pie 

Chart was the high performers’ selection of an effective but simple strategy incorporating 

their existing mathematical knowledge of fractions and their multiplication skills. Pie 

charts are Miscellaneous graphics that encode information through the use of angles 

(Mackinlay, 1999). In the fractional strategy, high performers showed their ability to 

recognise the value of a key portion of the chart as a quarter of the total time and to use this 

knowledge efficiently in solution. In contrast, in the estimate and add strategy, low 

performers typically estimated the values of all of the portions, sometimes erroneously, and 

added these times. This approach was more mentally demanding because half hours needed 

to be recognised and the addition involved multiple addends including fractions.  

Theme 2: The Use of Cues  

A further difference between high performers and low performers was their use of cues 

within the task. High performers were aware of and used multiple cues to solve problems, 

whereas most low performers were not. The importance of using more than one cue is 

illustrated by students’ responses on the following item.  

The Scale item required students to find the mass of an apple by referring to a graphic 

depicting a traditional set of kitchen scales (see Appendix). On the face of the scales there 

were three cues in the form of values marked in grams: zero at the top, 100 in the middle, 

and 200 at the bottom. Between the labelled numbers were unlabelled marks that each 

represented 10 grams. Use of at least two of the number values was needed to appreciate 

that the vertical scale was arranged in ascending order.  

The five high performers and one of the low performers successfully identified that the 

scale indicator was at the 170 gram mark. Four of the five high performers noted that the 

unlabelled mark halfway between 100 and 200 was 150, and proceeded to count in tens to 

170. Cody was one of these high performers who used this midpoint strategy to 

successfully find the mass of the apple.  

Cody:  What I did then is like, do 150, and then went 160, 170. 

One low performer, Mike, used exactly the same process as four high performers and found 

the halfway mark and counted on. Recall that low performers were selected as students 

who were consistently low performers over 24 interview items. As in Mike’s case, this did 

not preclude them from being successful on a few items. Elise, the fifth high performer, 

was also successful but her count all tens strategy was less efficient. She counted on in tens 

from 100 grams to 170 grams making no reference to the halfway point between 100 and 

200 grams.  
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In contrast to the successful students (five high performers, one low performer), the 

unsuccessful students (four low performers) did not detect the ascending order of the scale. 

These unsuccessful students used a single number value as a cue and then attempted to 

identify the mass of the apple. Nellie’s response was typical of other unsuccessful students 

in that she focused on the “200” value, which was close to the mass indicator, and 

incorrectly assumed that the scale was in descending order. 

Nellie: I put 230 grams because the arrow was near 200 and then I just counted steps up. 

Nellie was efficient in counting by tens from the 200 mark to reach 230 grams, but because 

she did not account for the directionality of the scale, she counted forwards rather than 

backwards. Thus, the key difference between all high performers and most low performers 

was the ability to identify the directionality of the scale. Detecting that the scale was 

ascending required attention to at least two number values, which acted as cues for 

directionality.  

The Scale item used an Axis graphic to encode information by the placement of a mark 

on some form of number line (Mackinlay, 1999). Although number lines are commonly 

used in primary texts and tests, they are difficult for some students. On the (US) National 

Assessment of Educational Progress, many fourth graders’ success using a scale was no 

better than chance accuracy on a multiple choice item (1 out of 4, 25%) (National Center 

for Education Statistics, 2003). Here, we have identified directionality as problematic but 

students also have difficulty with Axis graphics because they interpret the number line as a 

counting model rather than a measurement model (Diezmann & Lowrie, 2006). 

Theme 3: The Solution Approach 

A further difference between high performers and low performers was their solution 

approach. When approaching a task, more high performers than low performers were 

methodical. They typically broke tasks into components and dealt with these components 

systematically. In contrast, low performers tended to attempt items more holistically. These 

differing approaches are illustrated in the following example. 

In The Puzzle item, students were asked to select which of four puzzle pieces would 

complete the picture of three triangles (see Appendix). The solution piece needed a portion 

of each triangle to match the partly shown triangles in the picture. Every high performer 

was successful on this item whereas only two of the five low performers were successful.  

Four out of five high performers selected the correct response by using a component 

strategy involving pieces of the puzzle. Rita’s response was typical. 

Rita: That bit there can fit into this one, that bit can fit into this one, and that can fit into there. 

Rita’s response suggests that she examined the sections of the triangles and decided which 

piece would fit into the larger puzzle. All high performers who chose this strategy were 

successful but only one of two low performers using the same strategy was successful.  

The other approach used by students was a perceptual strategy. This strategy was used 

successfully by one high performer and one of three low performers. Jacob (low performer) 

used this strategy successfully and like his high performing counterpart made his choice 

based on what “looked” right.  

Jacob: They all looked in place.  

On this item, there was overlap in strategy use by high performers and low performers. 

Students’ success using these strategies revealed two points of interest. First, some 
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strategies are more likely to lead to success than others. Overall, the success rates were 

83.3% for the component strategy (5 out of 6 students) and 50% for the perceptual strategy 

(2 out of 4 students). The component strategy was selected by 60% of students (40% high 

performers; 20% low performers) and the perceptual strategy by the remaining 40% of 

students (10% high performers; 30% low performers). Thus, high performers more than 

low performers selected strategies that were more likely to lead to success. Second, 

irrespective of which strategy the high performers selected they were more successful than 

low performers. All high performers who employed the component strategy were 

successful compared with 50% of low performers. Additionally, the one high performer 

who used the perceptual strategy was successful compared to only 33% of low performers. 

Thus, high and low performers differed in both their selection of a strategy and in its 

execution. 

The Puzzle item used a Retinal list graphic, which encodes information in various ways 

including shape, size, and orientation (Mackinlay, 1999). The component strategy 

accommodates each of these visual-spatial characteristics when puzzle pieces are tested 

systematically to check their fit in the large puzzle. In contrast, the perceptual strategy 

relies more on an overall impression of the goodness of fit of a particular piece rather than 

whether the shape, size, and orientation of the piece is correct for the puzzle.   

Theme 4: Knowledge of Everyday Graphics 

Everyday graphics add authenticity to numeracy tasks. However, it cannot be assumed 

that students are familiar with these graphics or can use them effectively as shown in the 

following example.  

In The Calendar item, students were asked to find a certain date on the supplied 

calendar (see Appendix). Unlike the other items discussed in this paper, there was limited 

difference in the success rates for high (100%) and low performers (80%). However, high 

and low performers differed in two ways in their use of the calendar.  

First, more high performers (80%) than low performers (40%) used an efficient 

graphically-oriented strategy. Four high performers and two low performers successfully 

used a count back by weeks strategy in which they read off the numbers in the Thursday 

column, thereby capitalising on the spatial organisation of the calendar. Anna’s (high 

performer) response is typical of these students.  

Anna: One week was 22, and two weeks would have been 15, and three weeks would have been the 

eighth. 

A less efficient strategy – count back by days strategy – was used by two low performers. 

Although this strategy was used successfully, it was inefficient because the students failed 

to capitalise on the spatial organisation of the calendar when they counted by days instead 

of by weeks. The final high performer successfully used a subtraction strategy to calculate 

21 days earlier. No low performers attempted this strategy.  

Second, one low performer demonstrated a lack of understanding of the basic structure 

of a calendar. Helen appropriately chose the count back by weeks strategy. She started 

counting at 29 but the three “weeks” she counted were the Thursday, Friday, and Saturday 

columns. Helen selected her answer, the third of May, from the top of the Saturday column.  
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Helen:        I worked it out because… it’s one week (indicating the Thursday column), I counted 

the weeks until the 29
th

 May…  

Interviewer:  So tell me why you think it’s the third (of May)? 

Helen:       I went back from the 29
th

 and I counted three weeks and it ended up there (3 May).  

During the solution process, Helen made four errors in calendar use. Her first error was to 

treat the columns incorrectly as weeks rather than the rows. Her second error was to count 

forwards rather than backwards starting at the Thursday column and finish at the Saturday 

column. Her third error was to count the commencement column as the first week before 

the 29th May. This meant that she only counted two “weeks” before the initial date instead 

of three “weeks”. Recall her concept of the representation of a “week” as a column on the 

calendar was incorrect. Helen’s identification of the commencing location as one week is 

another example of primary students’ lack of understanding of how to interpret the 

measures on a graphic. Diezmann (2000) reported that many similarly-aged students 

incorrectly identified the ground height on a diagram of a tree as one metre. Helen’s final 

error was to select the answer from the top of the Saturday column rather than its base. This 

step violated her own reasoning that the columns were weeks when she moved up the rows. 

However, this anomaly might have occurred because the only multiple choice answer 

option in the Saturday column was “3 May”, which was at the top of the Saturday column.  

The Calendar is a Miscellaneous graphic that uses a variety of graphical techniques to 

communicate information. The conventions for using a calendar typically include 

representing the weeks of a month in seven labelled columns – one for each day of the 

week – and showing blank cells in the first and last weeks of the month before and after the 

first and last days of the month if necessary. The four high performers and two low 

performers who used the count back by weeks strategy capitalised on the spatial 

organisation of the calendar in their solution. In contrast, the spatial structure of the 

calendar was not recognised by the two low performing students who used the count back 

by days strategy. Though they were successful, these students’ strategy is inappropriate 

because it fails to take into account the structure of a calendar. Similar to using the 

columns on a hundred board to count forward and backward in tens, students should use 

the columns on a typical calendar to count forward and backward in weeks. Because a 

calendar is an everyday graphic, both the low performers who used the count back by days 

strategy and Helen, who made multiple errors in calendar use, need to learn how to use a 

calendar efficiently.  

Conclusion and Implications 

Educationally, the comparison of these high and low performers’ thinking about the use 

of graphics in mathematics was instructive in three ways. First, low performers need to 

develop adequate mathematical and graphical knowledge to be successful on numeracy 

tasks. Hence, teachers should support low performers to identify any related mathematics 

that could be used in the solution and to check on their interpretation of the graphics. 

Second, low performers should be encouraged to draw on implicit information embedded 

in the graphic to generate further information – which high performers seem to do 

intuitively. Thus, low performers need to capitalise on the multiple cues within a graphic 

and reason from this visual-spatial information. Visual reasoning differs substantively from 

sequential reasoning (Barwise & Etchmendy, 1991). Hence, explicit instruction may be 
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required, such as teaching students how to interpret and reason from a family tree. Third, 

because some strategies are more likely to lead to success than other strategies, it would be 

helpful in discussions with students to compare the range of strategies used in terms of the 

efficiency of strategies and the likely errors using particular strategies. Overall, the 

comparison of these high and low performers indicated that to become more successful on 

graphically-oriented numeracy tasks, it is essential that low performers develop and use 

mathematical and graphical knowledge, generate information from graphics, build 

repertoires of strategies, and select and use these strategies judiciously.   

Methodologically, the comparison of high and low performers’ thinking has been 

fruitful because it provides a means to explore how different approaches to thinking 

contribute to success. Thus, conceptually high performer-low performer comparison acts as 

a thought-revealing tool for researchers in a similar way to model-eliciting tasks acting as a 

thought-revealing tool for teachers and students (see Lesh, Hoover, Hole, Kelly, & Post, 

2000 for a discussion of thought-revealing activities). 
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Appendix  

 

 
The Pie Chart (National Centre for 

Educational Statistics, 2003, Year 4, Q. 3) 

The Scale (Queensland School Curriculum 

Council, 2001, p. 31). 

 

The Puzzle (Educational Testing Centre, 

2002, p. 8). 

The Calendar (Queensland School 

Curriculum Council, 2002, p. 9) 
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